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ABSTRACT

This is the second of three papers in which we study global convergence

of iterations using linear information for the solution of nonlinear equations.

In Wasilkowski [7 8] we proved that for the class of all analytic scalar complex

functions having only simple zeros there exists no globally convergent stationar_

iteration using linear information. Here we exhibit a nonstationary iteration

using linear information which is globally convergent even for the multivariate

and abstract cases. This demonstrates the strength of nonstationary iteration.
Cii

In Wasilkowski (79]"we shall prove that any globally convergent iteration using

linear information has infinite complexity even for the class of scalar complex

polynomials having only simple zeros.
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1.1

1. INTRODUCTION

We deal with the iterative solution of a nonlinear operator equation F - 0

where F is an analytic multivariate or abstract function having only simple

zeros. Most iterations are only locally convergent, i.e., the sequence (xi)

generated by an iteration is convergent to a zero o assuming that the starting

points are "sufficiently close" to a. In practice it is very hard to verify this

assumption and one therefore wants to use globally convergent iterations. All

known globally convergent stationary iterations for the class of analytic operators

use nonlinear information. Since most iterations of practical interest use linear

information, we would like to know whether there exist globally convergent itera-

tions using linear information. From Wasilkowski (78], we know that no stationary

iteration using linear information can be globally convergent even for the scalar

case. In this paper we pose and affirmatively answer the following problem:

Do there exist nonstationary iterations using linear information which

are globally convergent?

We construct a globally convergent nonstationary iteration which is an

interpolatory iteration. The i-th step of this iteration requires the computa-

tion of F(xo),F' (xo),... ,F (i 1)(x) and the solution of a polynomial equation

of degree i-l. Since, in practice, we cannot solve exactly a polynomial equa-

tion this iteration is primarily of theoretical interest. It establishes the

power of nonstationary over stationary iteration.

In a forthcoming paper, Wasilkowski [79],we shall prove that any iteration

using linear information has complexity equal to infinity. More precisely,

we shall prove that for any such iteration there exists a scalar polynomial
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having only simple zeros such that the cost of computing a better approxima-

tion than the starting one is arbitrarily large. This exhibits the impor-

tant difference between the concepts of convergence and complexity. The

class of linear information operators supplies enough knowledge to find a

globally convergent iteration but its cost can be arbitrarily high. Hence

from a practical point of view, the class of linear information operators is

too "weak" for the solution of nonlinear equations. Therefore we have to

use stronger (i.e., some nonlinear) information in order to guarantee global

convergence and finite complexity.

We summarize the contents of this paper. For the reader's convenience,

in Sections 2 and 3 we deal only with iterations without memory. The exten-

sion to the case with memory is given in Section 4. In Section 2 we give a

very general definition of information and iteration without memory. We

recall the definition of globally convergent iterations and define the con-

stant of global convergence. In Section 3 we prove that for the class

of all analytic operators having simple zeros, the constant of global con-

vergence is no larger than 1/2 for any iteration. Furthermore we proved

that only "one-point" iterations can be globally convergent. We also exhibit

an iteration which is globally convergent with the constant of global conver-

gence no less than 1/3, which means this iteration has a "large" domain of

convergence. In the Appendix we prove global convergence of all iterations

we exhibit in Sections 3 and 4.
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2. INfFORNTION AND ITERATIONS

in this section we introduce a very general definition of information

and iteration. We also discuss very briefly the definition of globally

convergent iterations (for more detailed discussion see Wasilkowski [781)

and define the constant of global-convergence. For the reader's convenience,

Sections 2 and 3 deal with iterations without meory. Iterations with memory

are considered in Section 4.

Let 111 12 be two Banach spaces over the complex field (C which have

dimension

N - dim B, dim B 2  1 -.5N < +u

Let H be the class of all operators 7:D FC B 1- B2aayi nD and let ~

be a subset of R which consists of operators having only simple zeros. Let

S(F) be the set of all zeros of F. Consider the nonlinear equation

(2.1) F(x) - 0, F E .

To motivate our definition of an iteration consider first Newton itera-

tion for a scalar case.

Example 2.
Let B, a 12B t For a given approximation x0 of a solution of F(x) 0

we construct the sequence of approximations (xi] by the formula

(2.2) x 1.41 W * (xi; F(x i)sP'(x±)) - x - Fe(x i) F (x±)

This mans that x14 requires the information (F(xi),F7'(xQJ]. Denote

2(f,x) - F(x),F'(x)] and *F(x) -*(x; 2(7,x)). Thus x~ depends on O



2.2

(2.i x- *F(xi 1) a *F(*.(xj 2)) - 0 0 * **

and on the information

(2.4) 2i(F,Xo) - [F(x O) ,F' (x O) ,F(x1) ,F' (x 1 ) ... ,F(x .I ) ,F'(xl ) ].

We denote (2.3) and (2.4) as

(2.5) xi - I £(x0; Mi(F.'x0)).

We define an iteration by generalizing the information 2 in (2.4) and

the function ci in (2.5) as follows. Let L :DL C H X B1 - be a func-

tional which is linear with respect to the first argument, i.e.,

Lj(clFl+c2F2 x) - clLj(FlX) + c2L(F2,x) whenever x E D1. n F We assume

that Lj (F,x) is undefined for x V D . Then a linear information operator It,

2 -DAxC H X BI  ( ,n is defined as

(2.6) M(F,x 0)  [LI(F,Zl),L 2(F,z2),....,Ln(F,Zn)1, 4F E H, Wx0  ,

where zI a x0 and Zk+l =aCk+l(Zl; LI(F,zl),L 2 (Fz 2),...,' L(Fzk)) for some

functions J - 1,2,...,n. Let 1 - (M.] be a sequence of linear informa-

tion operators, :D CH X B for t = 1,2,.... Let x be an

approximation of a solution of (2.1). We construct a sequence of approxima-

tions (xi) by the formula

(2.7) xi - Ti(xO; 2i(Fxo))

where :D i C BI X ( - B 1 are operators. Then the sequence ( - ) is

called an aiutration usine e information sequence 2. Let I(M) be the class

of all such iterations.
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Let (0 2] be information and let ( =- C C() be an iteration.

We shall say ; is a one-point iteration iff for any i - 1,2,..., the points

ZZ2...Z given by (2.6) are equal to x0. We prove in Theorem 3.2 that

any globally convergent iteration is a one-point iteration. We shall say

; is a stationary iteration iff there exist a linear information operator 2

and an operator cp such that

( -, (F,xi .), x 9 = (0; 9i(F,x 0 )) = q(xi 1 ; 2(f,xi)), = 1,2,...,

for any F and x0 e DF . We shall say is nonstationary iff q7 is not a

stationary iteration. I
In most papers iterations are defined in a way that exhibits the depen-

dence of xi on some previously computed xi, j < i. For example, see Traub

(64], Ortega and Rheinboldt (70),and Traub and Wozniakowski (78]. Our defini-

tion of an iteration generalizes these definitions. In Wasilkowski [79] we

shall establish a negative result for even this very general class of itera-

tions.

We are now ready to define global convergence of an iteration. Let

J(aR) # (x B x-yII < R) denote the ball of center a and radius R.

For any F, F , and any a E S(P) define

R DF) inf

as the distance of o to the boundary 6DF of the domain DF. Let

B(b,F) U L J((Y,(,))

where b > 0. Let cp E #(M) be an iteration. Let A be the set of real numbers

a such that for any F C 3and any x0 E B(a,F) the sequence (xiI, xt - (Xo; 21 (F,9o)
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is well-defined and lim x E S(F). We shall say c = c(,Y is the constant

of global convergence of ! for the class i iff

sup A if A ,

otherwise.

Note that if there exists F from 3 with finite R.(a) then c(cp,T E (0,1].

If () - +m for any F E 3, then c(,3) is zero or infinity (with the con-

vention 0"- 0). The set B(cF) is a convergence domain of (p for F since

taking any starting point from B(c,F) we get convergence of (xi) to a solution

of F - 0.

Definition 2.1

We shall say that an iteration p is globally convergent for the class

iff
c(P,) > 0. U
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3. GLOBALLY CONVERGENT ITERATION

In this section we study global convergence of iterations for the class

of all analytic operators F from H having only simple zeros. We prove

some general properties of globally convergent iterations and we also exhibit

an iteration which is globally convergent.

Recall that N, N < + , is the dimension of the spaces B 1 and B 2. (See

also Remark 3.1.) Let (ail,,a, 2 " ..,a iN] be a basis for Bi, i1 1,2.

N

Let t Z t ia 1,i* We begin with

jinl

Theorem 3.1

For any iteration cp

C (p,3) 1/2.U

Proof

Suppose on the contrary that there exists an ~land a -1P E IIt) with

c - C(tq,3 1 ) > 1/2. Let

N

F(t) = (t 1- )a2 ,1 + Z a2j

Then F is an entire operator having only simple zeros, .1 1 and * -a1,1

Consider two operators

nF(t) -for 11 t- l< 211al,1 

Reiht) , undefined otherwise,

i - 1,2. Then FLe aE 31 -al,2ot. and RF ( ) *211 ais 11  i - 1,2.

N2



3.2

Since c > 1/2, then x0  YO 0 E B(c,F 1) n B(c,F 2). Let x, M mi(xo; 0 l(Flx 0 ))

and y£ - ci(Yo; si(F2 ,yo)). Then (xL] and (y ) are well-defined and tend to

a11 and -a11 respectively. Thus, there exists an index £0 such that y, 
=

for ± - 0,1,..., 0 and yitl xi+l" Since 2 i+l(Flxo) - 2ipi(F 23 y0 ) we

get y xi l which is a contradiction.

We now give a necessary condition on an iteration to be globally conver-

gent for the class

Theorem 3.2

If ; is a globally convergent iteration for the class then o is a

one-point iteration.

Proof

The proof of Theorem 3.2 is similar to the proof of Theorem 4.1 in

Wasilkowski (78]. Therefore we only sketch the proof.

Suppose on the contrary that there exists 3 - (Mil and (-oil E 7

which is globally convergent for and is not one-point. Let

N N

F(t) - F( Z t-a ) (tI-1)a 2,I + tsa2, s .

8s1 si-2

Then F is an entire function from 1 having only one zero ci a 1  . Let

x0 - 0. Since RF(c) - + -, there exist integers k and J0 , J0 E C1 ,nk] such

i =k ithat z 0 for any i < k and J .. n£, andz , . (The points z are
j k J0

defined by 2i and F.) Let m N Zn i For y1,Y2,...,YM+1 E T define
i-l

i! ....
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m+1

7 r
W (t) a t Y , s ,2,...,N.
s 2,s "' r s

r-1

N

Let W(t) Ws(t). Then there exist y1,y2,...,y 1, such that W % 0 and
i-I

U i(F+W,0) -%(Flo) for i - 1,2,...,k. For a > 0, define

FF(t) +'(t) for 11 tl< jzk 1,
Fa(t) =- jo

I undefined otherwise.

Of course, F. E for sufficiently small C. Furthermore, F (t) -- a2,1 +
Sm+la21

s + Yrts has a zero which tends to zero as a goes to zero.

s=2  r-l

Thus, for sufficiently small a, x0 M 0 E B(c(C,) ,Fa) which means that

Y, = Mi(0 ; %,(Palo )) are well-defined for any i - 1,2,.... .. Since "i(Fa,0)

Ti(Fo), zk I D . This means that is undefined which is a contradiction. U
a

We now exhibit a globally convergent nonstationary iteration for the

class 31. Let

ot ,(Ixo) = [F(x o ) I,' (Xo),...,F (n- 1) (x) .

Thus 91n is a linear information operator. Let 3- (q1n,0). For given x0 ,

x0 . DF , define

(3.1) Wn o(x) - W O(x,xO) = F(xO) + F'(x O)(x-r O) + ... +C F(n'l)(x )(x- x )nl

Let S(Wn,0) be the set of all zeros of Wn,0 .  Similarly to Traub and Woniakowski

(76] we define the interpolotory iteration 0- (In,O' xn,O(Xo'%,O(F'X )) =

xn E S(Wn,0) with some criterion of the choice of a zero xn . Thus, for different

criteria we obtain different interpolatory iterations. We propose the following

criterion for the choice of a zero xn of W n Let

n,0
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dist(x 0,S(Wn,0 )) if S(Wn,)
(3.2) d, 0 (x0)

+ otherwise.

Define

(3.3) Gn0(x0) (z E S(Wn,0) : 11 z-xoI : d ,0 (xo) + -3.
n,0 0 A

N

Let B- = lin(ala 2 ,...,aN). For any x E B1, x - taj, t E C, we define

iE R2N as

C Ere(t),im(tl) ,re(t2 ),im(t2 ),....,re (tN),im(tN)].

2N 2Let < be the lexical order on R , i.e., for any bl, b2 E R
2N , b, b 2*

bi M (bil,bi,2,...,bi,2N), we write b 1< b2 iff there exists an integer

k E [1,2N] such that b l,k< b2, k and bl'i = b 2, for i < k. Then we can define

an order on B V Namely,

(3.4) xI < x2 iff :W 1 <2

If S(W ) is nonempty then G 0 (x0) has a minimal element z, z z z (n,x0,n20 (F,x0))

in the sense of order <. We define

n O(FxO)) if S(Wn,)

In' 0 (x 0 "n0(F'x0)) 0 ((nx 0il ' 0(Fsx 0 )) otherwise.

Then f0 " (In, 0 is a nonstationary interpolatory iteration and 10 E1C(.)

Theorem 3.3

Iteration 0 is globally convergent for the class and

1

(3.5) €'CO,) 3 "
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Proof

See Appendix. U

We do not know whether (3.5) is sharp. We also do not know what is the

maximal constant of global convergence of iterations for the class . From

Theorem 3.1 and (3.5) we can only conclude

Corollary 3.1

1 - 1_1 " s. p c •3)

Remark 3.1

In this section we have assumed that the spaces B1 and B2 are finite

dimensional. We need this assumption in order to assure that "l,0(Fx) -

F(x) ,F' (x) ,...,F ( n -1 ) (x) is representable by a finite number of linear func-

tionals. For the infinite dimension case, dim B, f dim B2 2 ,(F~x)

is representable by infinite number of linear functionals. Defining the

iteration I 0 analogously to (3.1)-(3.4), it is possible to verify that Theorem

3.3 still holds. U
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4. ITERATIONS WITH MEMORY

In this section we extend all previous results to iterations with memory.

Since we do not know any globally convergent iteration with memory for the

multivariate case we assume in this section that B1 a B2 = T, i.e., N - 1.

We present two globally convergent iterations for different classes. The

first of these is the generalization of I it is globally convergent for the

class . The second is based on increasing the size of memory; it is

globablly convergent for the class of all entire functions from

Let m, m > 0, be an integer. Let L be a functional defined as in Sec-

tion 2. A linear information operator with memory 3, : D C H X Cm+ _. n

is defined as

(4.1) M(F,x0 x,...,x.,) = [Li(F,zl),L 2 (F,zn),...,Ln (,zn), W E H,

VX0,X-l,'...,x-m DyV,

where z I - x 0 , z2 2 x 2 ,...,zm+1 x-m and 'k+1 = Ck+l(zlz 2,...,zm+l;

Ll(Fl,zl) ,L 2 (Fz 2 ),...,Lk(F,zk)) for some functions j, j =-m2,m+3,...,n.

Let

be a sequence of linear information operators with memory, !.2: Dt C H X 4m+l

Let x09Xl,...,Xhm be distinct approximations of a solution of (2.1). We con-

struct a sequence of approximations (xi] by the formula

(4.2) x i 
=  i i(x0,xl,...,x-; 1,xx-,...,xm))

m+l+n i

where cP1 :D C ( - (G are functionals. Then [ - cpt] is called an

iteration with memory using information sequence Let %(-2) be the class

of all such iterations.
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We now extend the definition of global convergence. For any iteration

9, cj E M (1, let A be the set of all real numbers a such that for any F E

and any distinct points x0 ,xl,...,x satisfying x0 E B(a,F) and

lx j-x0I < c dist(x0 ,S(F)), the sequence (xi), xL 0 9i(x0,X.1,...,x m;

7ti(Fx0,x.1)...,x m)), is well-defined and lii xi E S(F). We shall say
c - j.,ac=tato goa

c c(tpT is a constant of global convergence of c for the class ! iff

c (sup A if A 0,

otherwise.

Definition 4.1

We shall say that an iteration c is globally convergent for the class

iff

OpT >0.

For this case it can also be shown that for the class defined in

Section 3,

c p,) p -t

An example of globally convergent iteration for the class is provided

by the generalization of I0 iteration. Namely, let

F(n I) (x i) ,... ,F (X-) F' (x ),... ,(n ) (x )]

Thus 2 :D c R X l - r+l wheren,m n7t
( r nm

(4.3) r =r(n,m) - (=+l)-l.
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Let no - t ] For distinct x 1  let ... ,
nm n . let Wno = n  o , m

be an interpolatory polynomial of degree at most r satisfying

(4.4) w1()(x.) = F(k)(xJ) for k = O,l,...,n-l and j = O,l,...,m.4.) n,m -

Let S(W nm) be the set of all zeros of Wn,m and let

(4.5) d n (X ) dist(xoS(W nm)).

Define

(4.6) Gn,m(x O) z E S(Wn, )  z-xo d (x)+-

and let z z (n0mX, 1  (FXox,...,x m)) be the minimal element from

G n,m(xO) in the sense of the order relation <. Then

ln~mXo,~l,..,xm; ,,,m(FXoXl,...,qx.)df * oh e (n',

is~~~~~ ~~ 1:::i:::~:IZIm){ otherwise,
is a functional, I n, m : Tm+l+r+l - L and

is an iteration with memory, 1 0 (2).

Theorem 4.1

For any a, a 1, iteration "m is globally convergent for the class and

c(,1) 4

Proof

See Appendix.

______ ____
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We now present a globally convergent iteration for the class 3.of all

entire functions. For fixed n, n k 2, let

Mi(F'xO) (F(10),...,OFn 1) (,0 )F(x,)Q... ,F nl(x1 ) 9 ... SY(X i1 ),...,F( '(x 1)J

Define- i(alix) -

Thn teainp~ 1 0q 1-,(i 1"-

Thnn)ineiatio requires the computation of F(xi)
F' (xi 1 ... 9F (xii per step.

Theorem 4.2

For any a, n k 2, the iteration is globally convergent for the class

3of all entire functions from 11 i.e., C (Pn") - +a.U

This theorem can be proven analogously to Theorem 3.3 and therefore its

proof is omitted.
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APPENDIX

we prove Theorems 3.3 and 4.1. We begin with the scalar case, i.e.,

B B- , N - 1. Let F E and nm (m 2 0) be integers. Let

(A.1) Rn m(x) R ,m (x; X0 ,x, ... ,ixm) I F(x)-W n,,(x).

Then

1 0 1
(A.2) R (x) - (x-x) . (r+ l) (-X)+..+tr(X-x m))dtr dtr.

•..dr 
0 .

where

r = r(n,m) - n(m+1)-l.

For any F 6 31 and a 6 S(F) define

S(k) zlfrk-23

(A.3) Ak(r) - Ak(ra,F) - sup j() k' k 2,3,...
xe(ar)

Let q E (0,1) and xoX 1,...9%m E J(awr) be distinct. Following the proof

technique of Theorem 2.1 of Traub and Woiniakowski [76] we prove

Lemma A.1

If 1 ) (Iq) r+ltX

(A.4) A2(rqr + Ari q < 1

then the polynomial W n, has a zero z - z(x0,xil,...,x.a) such that

(A.5) I -il i qx 0' 0. U

Proof

We can assume x0  a. Since F(x) - ' (a)(x-c) + R2,0(x; a) and

F(x) W (x)- (x) we get
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(A.6) x-F (a)1'W ,,,(x) " H(x) of + FI (xn,n(x) - R 2 ,0 (x; a)].

Thus W has a zero in J(a,qjx 0-aj) iff there exists a fixed point of

(A.7) x - H(x), x E J(a,qjx 0-aj).

We first verify that H( .Ka,q Ix0-aI) C J(a,q x0 -orj) . Let Ix-aI < qIx0 -rl .

From (A.2) and (A.3) we get

a m2IapH~x) I A,+,¢r rl Ix-x jln + 2(r I x-,2 :Z Ar+lC (r rl Ix- a +1 r-I . n +A2C Ix-*l 2
J=O J-01

<A+(lr(q Ix-ol,1 x0 "a 1  - (qr+D 1+A (1DqIx0-lqr
J-0

qx 0-a I CA,+,rL) (1+q q + A2 (qr)

q~r (1-q) [A Ic>< r+l T
-a+ (A 2(r)qrl < qfx0-of.

Thus H(J(o,qjx 0 -cI) C T(aqjx0 -aj). From the Brouwer fixed point theorem,

see e.g., Ortega and Rheinboldt (70, p. 161], it follows that there exists

a zero of the polynomial W in J(a,qjx 0-aI). This proves (A.5). U

Let D. be the domain of F,F 7 E3, such that D Then for any

Ot6 S(F), R - RF() is finite. From Cauchy's formula there exists a constant

M - M(Fd) such that

(A.7) I F ' ) " k - o,1,.

Traub and Wosniakowski (76] established
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Lema A.2
&F(at)

Let r' <- Then there exists nI such that (A.4) holds for every

n z n with

q = (a) and r = n(m+l)-l. U
M(a)F r

For fixed LtF define

(A.8) y(nm,IK) =  sup sup IF(C)-W (C; x0 x 1 ... ,x )I.
x0eJ(c,L) C,x 1.... ,x1EJ(x 0 ,K) n"m M

Lemaa A.3

M If m 0 and L <- - then

Urn y(n,0,m 3 ) = 0.

(ii ) if m I" and L < - then

1ir y(n,m 0. U

Proof

Let m - 0. Denote 1- RF(). From (A.2) we get

R R(n) R 1 (n)(C
XoeJ(&,L) CIEJ(Xo. )  C &,AY3"

From Traub and Wozniakowski [76] we know that

n.i) r 1L 1 n

which implies
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(A.9 1 ',3 R-3L2R

\. 3R

Since R/(2R-3L) < 1, the right-hand side of (A.9) tends to zero. Hence (I)

is proven.

For m 2 1, it can be similarly shown that y(n,m,R/4) 0((2R-4

Since R/(2R-4L) < I, we get (ii). This completes the proof. U

Lemma A.3 states that the polynomials W uniformly approximate F. It
n'm

is also easy to show that W' tends to F'. Since a is a simple zero of F,
n m

then either reF'(x) or imF'(x) is distinct from zero in a ball J(a,f ) for

some r ,r - F (aF) > 0. Without loss of generality we can assume that

re F' > 0. Then for sufficiently large n, re U' (x) also does not vanish in

rj - J(a,y-). Thus, re WnM (x) has at most one solution in J. From this and

Lema A.2 we conclude that Wnm has exactly one zero in y. This is summarized

in

Lemm A.4

There exists *, r* - r*(c,F) > 0, and an integer n2 , n2 -.n2(cF), such

that for any n a n2 the polynomial Wn,m has exactly one zero in J(a,F*/2). U

Proof of Theorem 3.3 for N - 1

Consider first P E 3l with DF (, i.e., Ra) < +-, -Vo E S(F). Let

x0 e B(jF). Define S(F,xo) - (a E 5(F) : IxO-a* - dist(xo,S(F))] - (crOtl,...,&

where an is the minimal element from S(F,x O) in the sense of (3.4). of course,

=o-wo <  3 We prove that the sequence x eneraed by tends to Vo.

Let 9 be a positive number such that e 19i (*J') : a E S(7,xO)].

From Le~as A.1, A.2 and A.4 there exists na, n1 - Ul() such that for n k u1
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(I+%) Ixo-ot < (

where

df 1 R (o)
qn ' ' ma-x ~ lF

ciES(F,x 0)

and the polynomial Wo(X; xO) has zeros zn which satisfy

(A.10) Izn-jI < q[Xo-:o s for j - 0,1,...,s.

Furthermore zn is the only zero of WnO(x; x0) which belongs to J(aj; €). Let

B(x0) J(x0 ,--o,) \ U J(Y,)

and

a- a() - inff(x) I : x E B(xo)1.

Of course a > 0. From Lena A.3 we get

sup{lf(x)-W (X; Xo)I :x r J(Xo 0,-F-)

for sufficiently large n, n k n2 - n2 (c). Note that IWn, 0 (x)I k

IF(x) l - IF(x)-Wno() 2 > 0. Thus w,0 does not have a zero in B(xo).

Let n3 - maxfnln 21. For n 2 n3, xn e L J(ct,e). Note that

d f dist(x0S (F) \ S(F,x 0 )) > x0-a0 . Then for an arbtrary E (0j-(h-IX 0-[0 I))

we get

xn U. J(a, -)
aes (F ;xo)

for sufficiently large n. Therefore if S(F,x 0) ( 0 is a singleton set

then Ixn -0iol c which implies that li x - ao.
n-'M
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Suppose now S(F,x 0) - cy,..,s] is not a singleton. Then for

sufficiently large n,

Gn(X) S n j(xo,(1 )Jxo-ar()= )zo,zl,...,zs

where
n z

1Z- qX 0-a0 and z for j - 1,2,...,s.

Define n0 as an integer such that

(A.11) q1
n 2 1 0 0-' 

,

Since Ix0-Qj - (j-zj 5 IZ- 0( S (x- + iz'-I for - 0,1...,s, then

io.o .. 1
iz0-x0  - dn(xo) 2q%1o 0 -r 0 I <1

n nfor large n, n > no. Thus z0 E Gno(xo), see (3.3), which means that xn  zo.

Hence lir x 0 which completes the proof for the case D .

Consider now an entire function F E 3, i.e., DF - . Let abe an

element from S(f). Define

F(x) if x E ,410F-xoI),

undefined other ise.

Then F E 31,Di# C, a E S(F) C S(F) and Ri(c) -4 lch.xo. Since x0 E B(F)

then the sequence , Yn" I .(xo; .o@.io)) is convergent and

lim e S(F) C S(F). Since 2l 0 (Px 0 ) - gl,(F,x0), Yn = xu and thereforeU nO.U

lin x E S(F). This completes the proof of Theorem 3.3 for the case N - 1. U
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Proof of Theorem 4.1

Following the proof of Theorem 3.3 for N 1 1 and applying Lemma A.3(ii)

instead of (i), we easily get the proof of Theorem 4.1. 3

To prove Theorem 3.3 for the case N 1 I, consider an analytic operator

F, F E ,. Then for

(A.12) R (x) R (x; x F(x) - W,(X; x
nO n ,O 0 nO0 0

we have

(A.13) R 0 (x) n ,W F(n)(X 0 +t(X'x 0 ))(X-X 0 )n (n-l)' dt,

see e.g., Rall (69, p. 124]. Define

,A - sup 11 F,' (C) 'k )
xE-j(),r')

It is obvious that Lemas A.1 to A.4 also hold for this case with the modulus

replaced by the norm " I. The detailed proofs of Lemms A.l and A.2 for

m - 0 can be found in Traub and Wozniakowski (76].

Following the proof of Theorem 3.3 for N - I with the modulus replaced

by Ij lb we easily get the complete proof of Theorem 3.3.

-i
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